
SaPHyRa: A Learning Theory Approach to
Ranking Nodes in Large Networks

Phuc Thai
Virginia Commonwealth University

thaipd@vcu.edu

My T. Thai
University of Florida
mythai@cise.ufl.edu

Tam Vu
Oxford University
tam.vu@cs.ox.ac.uk

Thang Dinh
Virginia Commonwealth University

tndinh@vcu.edu

Abstract—Ranking nodes based on their centrality stands a
fundamental, yet, challenging problem in large-scale networks.
Approximate methods can quickly estimate nodes’ centrality and
identify the most central nodes, but the ranking for the majority
of remaining nodes may be meaningless. For example, ranking
for less-known websites in search queries is known to be noisy
and unstable.

To this end, we investigate a new node ranking problem
with two important distinctions: a) ranking quality, rather than
the centrality estimation quality, as the primary objective; and
b) ranking only nodes of interest, e.g., websites that matched
search criteria. We propose Sample space Partitioning Hypothesis
Ranking, or SaPHyRa, that transforms node ranking into a hy-
pothesis ranking in machine learning. This transformation maps
nodes’ centrality to the expected risks of hypotheses, opening
doors for theoretical machine learning (ML) tools. The key of
SaPHyRa is to partition the sample space into exact and approx-
imate subspaces. The exact subspace contains samples related
to the nodes of interest, increasing both estimation and ranking
qualities. The approximate space can be efficiently sampled with
ML-based techniques to provide theoretical guarantees on the
estimation error. Lastly, we present SaPHyRabc, an illustration
of SaPHyRa on ranking nodes’ betweenness centrality (BC).
By combining a novel bi-component sampling, a 2-hop sample
partitioning, and improved bounds on the Vapnik–Chervonenkis
dimension, SaPHyRabc can effectively rank any node subset in
BC. Its performance is up to 200x faster than state-of-the-art
methods in approximating BC, while its rank correlation to the
ground truth is improved by multifold.

Index Terms—ranking subset, centrality, betweenness central-
ity, sampling, VC dimensions

I. INTRODUCTION
Ranking nodes in a network poses a fundamental problem

in network analysis, resulting in various centrality measures
from degree centrality [1], closeness centrality [2], betweenness
centrality [3], to Google’s PageRank [4]. It finds applications
in identifying influential users in social networks, analyzing
location in urban networks, characterizing brain networks [1, 5],
and so on.

In large networks the exact computation of centrality is
intractable, thus, approximate methods [2, 3, 6, 7] have been
developed to quickly estimate nodes’ centrality. Those methods
are effective in identifying the most central nodes, however, the
induced ranking for the majority of remaining nodes is often
inaccurate. For nodes with small centrality values, a small error
in estimation can result in a large perturbation in ranking, as
seen in the ranking for less-known websites in search results
[8]. The same challenge in ranking also arises from analyzing
locations of lesser centrality in urban networks in which a

majority of nodes have small betweenness centrality [9]. Thus,
there is a lack of approximate methods that provide an accurate
ranking of nodes in large-scale networks.

Moreover, most approximate methods to estimate centrality
often produce the estimation for all nodes in the network
[10, 11, 3, 12], even when only ranking for a small subset
of nodes is required. This often leads to the analysis of
separate subnetworks, cut-off from a large network [9], risking
inaccurate assessment of nodes centrality in the complete
network. Is it possible to design methods to rank node subsets
substantially faster than ranking all nodes in the network?

To this end, we investigate a new node ranking problem,
called subset ranking, with two important distinctions: a)
ranking quality, rather than the estimation quality, as the
primary objective; and b) ranking only target nodes, e.g.,
websites matched search criteria.

Our proposed solution is a framework, called Sample space
Partitioning Hypotheses Ranking, or SaPHyRa, that transforms
ranking nodes into ranking hypotheses by mapping nodes’
centrality to the expected risks of hypotheses, following the
empirical risk minimization framework in machine learning
[13]. In SaPHyRa, we partition the sample space into exact
and approximate subspaces and combine the evaluations of
the hypothesis in both subspaces. The exact space contains
samples that are directly linked to the target nodes, providing
close “heuristic” estimation of the nodes’ centrality. Further,
the risks of the hypothesis in the approximate spaces can be
effectively estimated using statistical learning theory tools,
including Vapnik–Chervonenkis (VC) dimension [14] and
empirical Bernstein [13].

Lastly, we demonstrate the proposed framework on the task
of ranking nodes’ using betweenness centrality. Given a graph
G = (V,E), betweenness centrality (BC) [15, 16] defines the
importance of each node u ∈ V through the fraction of all-pairs
shortest paths passing through u. Methods to approximate BC
can be divided into two large groups: heuristics to either relax
the shortest paths [17, 18] or estimate BC via a subset of (non-
uniformly) selected shortest paths [10, 19, 20] and sampling-
based methods with additive error guarantees [10, 11, 3, 12].
Unfortunately, the recent benchmark [21] using 96,000 CPUs
and roughly 400 TB RAM indicates that existing methods
either do not scale to large networks, e.g., Orkut network with
125 million edges, or produce poor ranking quality.

In contrast, our proposed solution, called SaPHyRabc, offers

ar
X

iv
:2

20
3.

01
74

6v
1

 [
cs

.S
I]

 3
 M

ar
 2

02
2

both substantially better ranking quality and scalability. First,
SaPHyRabc has a new sampling method, called bi-component
sampling. Inspired by the approach to compute exact BC in
[22], our new sampling limits the attention to only the shortest
paths with both ends belonging to the same bi-component,
thus, reduces the complexity of the sample space. Second,
SaPHyRabc deploys a 2-hop-based sample partitioning to
guarantee non-zero estimation for nodes with small centrality.
Third, SaPHyRabc has a smaller sample complexity by reducing
the VC dimension from O(log V D(G) in [6] to O(1) in
many scenarios. Our experiments on large networks show that
SaPHyRabc is up to 200x faster than state-of-the-art methods
in approximating BC, while its rank quality is improved by
multifold.

Our contributions are summarized as follows:
• We propose a novel formulation of ranking a node subset

in large networks with the focus on the ranking quality
and time-saving in ranking subset (but not all nodes). We
also propose SaPHyRa, a general framework to effectively
rank nodes, especially, when nodes have small centrality
values. SaPHyRa provides an (ε, δ)-estimation for the
nodes of interest, using fewer samples, yet, with higher
ranking quality, thanks to its sample space partitioning
strategy.

• We propose SaPHyRabc, an illustration of SaPHyRa for
ranking nodes using betweenness centrality. SaPHyRabc
significantly improved ranking quality in comparisons
to the state-of-the-art BC approximate methods. It also
provides new VC-dimension bounds, i.e., tighter sample
complexity.

• We perform comprehensive experiments on both real-
world and synthesis networks with sizes up to 100 million
nodes and 2 billion edges. Our experiments indicate the
superior of SaPHyRabc algorithm in terms of both accuracy
and running time in comparison to the state-of-the-art
algorithms.

Organization. The rest of the paper is organized as follows: In
section 2, we introduce the Ranking Subset and the Hypotheses
Ranking problems. We propose SaPHyRa framework to solve
Hypotheses Ranking problem in section 3. To rank nodes using
betweenness centrality, we develop SaPHyRabc algorithm in
section 4. In section 5, we present empirical evidence on the
efficacy of SaPHyRabc algorithm (and the proposed SaPHyRa
framework).
Related work. A few methods focus on estimating the rank
without first computing the exact values of the centrality. In
[23, 24], Saxena et al. estimate the rank of nodes based on their
closeness centrality. In [25, 26, 27], heuristics are proposed
to compute centrality based only on localized information
restricted to a limited neighborhood around each node. Several
recent works [28, 29, 30, 31] aim to approximate node centrality
for large networks using neural networks and graph embedding
techniques. Notably, [32] demonstrate the multitask learning
capability of the model to allow the ability to learn multiple
centralities in the same model. While these heuristics can
quickly estimate the nodes’ ranking, there are no guarantees

on the estimation errors. In contrast, we aim for fast ranking
estimation with theoretical bounds on the estimation error.

Exact computation of betweenness centrality takes O(MN)
times in unweighted networks [33]. Bader et al. [3] introduce
an adaptive sampling algorithm to reduce the number of single-
source shortest paths. Riondato et al. introduce a different
sampling method that samples node pairs, resulting in faster
computation with the same probabilistic guarantees on the
estimation quality. In an algorithm called ABRA, The sampling
method is further fine-tuned using Rademacher averages in [6].
KADABRA is proposed by Borassi et al. [12] to speed up the
sample generation via a new Bread-first-search approach. These
approaches provide approximate betweenness centrality for all
nodes in the network with rigorous theoretical guarantees on
the additive estimation errors. Unfortunately, the estimated
centrality values result in poor ranking as shown in our
experiments. Further, there is little saving in computational
effort to estimate the centrality values for just a few nodes,
compared to that for all the nodes in the network.

Many advances in developing parallel and distributed al-
gorithms to compute and estimate centrality in networks
[3, 34, 35, 36, 37]. We note that our effort in ranking nodes
here is orthogonal to these efforts. Our sampling framework can
be potentially combined with parallel and distributed methods
to boost scalability.

II. PRELIMINARIES

Consider a network, abstracted as a graph G = (V,E) with
n = |V | nodes and m = |E| edges. In our ranking subset
problem, we wish to rank the nodes in a subset A ⊆ V
according to a centrality measure c(.). We focus on the case
that it is computationally intractable to compute the exact
centrality values c(v) for v ∈ A, e.g., when the network has
billions of edges or nodes. However, we should be able to
estimate the centrality measure with some guaranteed error
through sampling.

A. Ranking subset problem (RSP)
Let A ⊆ V be a subset of nodes, called target nodes, that

we wish to rank using some centrality measure c(.). Our goal
is to produce a ranking of the nodes in A that is close to the
ground truth ranking.

To produce the ranking of the nodes, we estimate the
centrality values based on a set of N samples x1, · · · , xN
and a function g(·, ·). For each node v ∈ A, we compute the
approximation

c̃(v) =
1

N

n∑
i=1

g(v, xi).

For example, consider the betweenness centrality that mea-
sures the importance of nodes in a network based on the
fraction of shortest paths that pass through them. To estimate
the betweenness centrality [6], we generate each sample xi
(i ∈ [N]) as a random shortest path. More precisely, we first
randomly select a pair of nodes (u, v) in V . Then, we randomly
select a shortest path p between u, v and set xi = p. The
function g(v, xi) is a binary function that outputs 1 if v is an
inner node of xi.

Another example is k-path centrality [38]. The k-path
centrality measures the importance of nodes based on the
fraction of k-hop paths that pass through them. In k-path
centrality estimation [38], each sample xi (i ∈ [N]) is a random
path that consists of at most k edges. Here, we first randomly
select a node u. Then, we perform an l-hop (where l ≤ k)
random walk from u and set xi as the l-hop random walk.
The function g(v, xi) is a binary function that outputs 1 if v
belongs to xi.

We measure the quality of an estimation based on the ranking
quality and the estimation quality.

a) Ranking quality: To measure the ranking quality, we
adopt Spearman’s rank correlation [39]. Other rank correlation
measures such as Kendall’s τ [40] can also be used.

Let A = {v1, v2, . . . , vk} where k = |A| is the size
of A. Denote by c =< c(v1), c(v2), . . . , c(vk) > and
c̃ =< c̃(v1), c̃(v2), . . . , c̃(vk) > the centrality vector and the
approximate centrality vector, respectively.

As the ranks of the nodes are distinct integers between 1
and k = |A|, the rank correlation can be computed using the
following simple formula [39]

rs = 1−
6
∑k
i=1 dr

2
i

k(k2 − 1)
, (1)

where dri is the difference between the actual rank of c(vi)
in c and the rank of its estimation c̃(vi) in c̃.

b) Estimation quality: We say c̃ is an (ε, δ)-estimation
of c if and only if

Pr[∀vi ∈ A, |c(v)− c̃(v)| < ε] ≥ 1− δ. (2)
To obtain an (ε, δ)-estimation of c, it requires
O(1

ε2

(
log n+ log 1

δ)
)

number of sample on the full
network and O(1

ε2

(
log |A|+ log 1

δ)
)

on the subset A.

B. RSP as a hypothesis ranking problem

We provide the mapping from RSP to the hypotheses ranking
problem, a fundamental problem in machine learning.

a) Hypothesis ranking (HR) problem: Consider a (dis-
crete) sample space X and a distribution D over X , where the
probability of each sample x ∈ X is denoted as Prx0∼D[x0 =
x]. Each sample x ∈ X is mapped with a label y = f(x).
Here, f : X → Y labeling function. We will restrict the label
space Y to be a two-element set, usually {0, 1} or {−1,+1}.
In a machine learning problem, the algorithm needs to learn a
function h : X → Y , called hypothesis, which outputs a label
y for a sample x.

We use a non-negative real-valued loss function L(y′, y) to
measure the difference between the output y′ of a hypothesis
and the true label y. The expected risk of a hypothesis h is
defined as the expectation of the loss function, i.e.,

R(h)
def
=
∑
x∈X

Pr
x0∼D

[x0 = x]L (h(x), f(x))

Given a set of k hypotheses H = {h1, · · · , hk}. Our goal
now is to rank the hypotheses based on the expected risk. That
is to compute an (ε, δ) approximation of the expected risks
that can provide a high rank correlation to the expected risks.

Mapping from RSP to Hypothesis ranking. The ranking
subset problems in which there exist sampling-based method
to estimate the centrality. In that case, we can design the

hypotheses so that the centrality value c(vi) equals the expected
risk of hi. Ranking the nodes is now equivalent to ranking the
hypotheses based on their expected risks.

C. Ranking subset based on betweenness centrality (RSPbc)

Betweenness centrality (BC) of a node v ∈ V , denoted by
bc(v), measures the transitivity of v, i.e., how frequently v lies
on shortest paths among other nodes. Mathematically, define

bc(v) =
1

n(n− 1)

∑
s6=v 6=t∈V

σst(v)

σst
, (3)

where σst denotes the number of shortest paths from s to t
and σst(v) denotes the number of shortest paths from s to t
that v lies on, respectively.

Computing exact BC takes O(mn) [10], where n and m
are the number of nodes and edges in the graph, respectively.
Thus, it is intractable for large networks.

To approximate the BC, several sampling methods have been
proposed, mapping the BC value of a node v to the expectation
of whether v will lie on a random shortest path. By treating
the probability that v lies on a random shortest path as an
expected risk, we can turn the ranking node subset based on
BC into a hypothesis ranking problem.
Mapping from RSPbc to Hypothesis ranking. The SP sample
space consists of all shortest paths between two nodes in the
graphs. To be precise, let Pst be the set of all shortest paths
from s to t in the graph. The sample space is defined as follows.

Xb = {p|(s, t) ∈ V, p ∈ Pst}. (4)

The SP distribution Db is a distribution over the SP sample
space, where the probability of a shortest path p from s to t
is

Pr
x∼Db

[x = p] =
1

n(n− 1)

1

σst
. (5)

For a shortest path p from s to t, we refer all nodes v ∈ p,
except s, t, as inner nodes. We define a function gv : Xbc →
{0, 1} as follows

g(v, p) =

{
1 If v is an inner node in p
0 Otherwise

(6)

Given the target nodes A ⊆ V , we define for each node
v ∈ A a hypothesis hv that maps each random path p to a
value hv(p) = g(v, p). We use 0-1 loss function and choose
the labeling function f that always output 0 for any path p,
i.e., L(hv(p), f(p)) = 1hv(p)=f(p) = g(v, p). Following [6],
betweenness centrality of a node v equals the expected risk
R(hv).

Lemma 1. For any node v ∈ V , we have

Ep∼Db
L(hv(p), f(p)) = Ep∼Db

hv(p) = bc(v)

III. SAPHYRA: SAMPLE SPACE PARTITIONING
HYPOTHESES RANKING

In this section, we present the sample space partitioning
(SaPHyRa) framework to solve the hypothesis ranking (HR)
problem. An application of the SaPHyRa framework in ranking
nodes in a subset using betweenness centrality will be presented
later in Section IV. Note that, due to the space limitation, here,
we omit the proofs of the lemmas. The detailed proofs are
presented in the Appendix of the full version [41].
A. Direct estimation.

An efficient solution is to estimate the expected risks
through sampling and rank the hypotheses based on the
estimation. To be precise, consider a sequence of N samples
x = (x1, · · · , xN) where, xi ∼ D,∀i ∈ [N], Here, we write
x ∼ D to mean that x is drawn from the distribution D.

The estimation of a hypothesis h ∈ H over X is computed
as

Re(h)
def
=

1

N

(
N∑
i=1

L(h(xi), f(xi))

)
Sampling complexity. The goal here is to find the number of
samples N to ensure that with a probability of at least 1− δ
(where δ ∈ (0, 1)), the difference between the estimation and
the expected risk of any hypothesis is smaller than ε ∈ (0, 1),
i.e., Pr [∀h ∈ H, |R(h)−Re(h)| < ε] ≥ 1− δ (7)
In this case, we refer to this as an (ε, δ)-estimation of the
expected risks. With N = O(1

ε2

(
log |A|+ log 1

δ)
)
, we can

guarantee an (ε, δ)-estimation of the expected risks.
Challenge in ranking hypotheses with low expected risks.
Ranking the hypotheses with low expected risk usually requires
many more samples. Assume that we can only afford to
generate enough samples to guarantee an (ε, δ)-estimation
of the expected risks due to a time limit. Consider the two
hypotheses that have the expected risks of µ1, µ2, respectively.
If µ1, µ2 < ε, i.e., ε > |µ1 − µ2|, there will be a high chance
that the relative ranking of the two hypotheses is incorrect.

B. Sample space partitioning framework

Our sample space partitioning (SaPHyRa) framework par-
titions the sample space X into two disjoint subspaces
X = X̂

⋃
X̃ where X̂ and X̃ are called exact subspace and

approximate subspace, respectively.
The partition is done so that the exact subspace X̂ will

contain samples that are directly linked to the hypotheses in H,
aiding the estimation of the expected risks. Especially, this will
resolve the above challenge in estimating the hypotheses with
low expected risks. The approximate subspace contains the
majority of the samples, providing (ε, δ)-estimation guarantees
for the expected risks. Combining them together, we have an
estimation that provide both high ranking quality and theoretical
guarantee on the estimation error.

Specifically, for each hypothesis hi, we combine the expected
risk the expected risks of hi on the exact subspace ˆ̀

i and the
estimation ˜̀

i of the expected risks on the approximate subspace
as follows

`i = ˆ̀
i + λ˜̀

i, (8)

Algorithm 1: Sample Space Partitioning (SaPHyRa)
Input : A sample space X , a probability

distribution D, a labeling function f , and
a hypothesis class H = {h1, h2, · · · , hk}.
Parameter ε, δ ∈ (0, 1)

Output : The rank of the hypotheses based on the
expected risks

1 Partition X = X̂ ∪ X̃ ;
2 D̃ be the distribution over X̃ as in Eq. 10
3 (λ̂, ˆ̀

1, ˆ̀
2, · · · , ˆ̀

k)← Exact(·) . Compute the
exact value in exact subspace X̂

4 λ← 1− λ̂
5 ε′ = ε/λ
6 N0 ← c

ε′2 ln 1/δ . the initial #samples
7 Nmax ← c

ε′2 (V C(H) + ln 1/δ) . the maximum
#samples

8 N ← N0 and x← ∅
9 Allocate the probability error δi such that Eq. 13 is

satisfied
10 for rd := 1 to dlog(Nmax

N0
)e do

11 for j := |x + 1| to N do
12 Genrate samples xj ∼ D̃ using Gen(·) and add

xj to x
13 for i := 1 to k do
14 z(i) ← [z

(i)
j = L(hi(xj), f(xj))]j=1..N

15 εi ← ε(N, δi, V ar(Z
(i)))

16 if maxi∈[n] εi ≤ ε′ then
17 Break
18 N = min(2N,Nmax)
19 for i := 1 to k do
20 ˜̀

i ← 1
N

(∑N
j=1 L(h(xj), f(xj)

)
21 `i ← ˆ̀

i + λ˜̀
i

22 Return (`1, `2, · · · , `k) and the rank of the hypotheses

where λ = Prx∼D[x ∈ X̃] be the probability that a random
sample x ∼ D belongs to the approximate subspace.
Exact subspace. We select the exact subspace X̂ such that
the expected risks on the exact subspace should provide good
estimations for the hypotheses with small expected risks. At
the same time, there should be an algorithm that can efficiently
compute the expected risks on the exact subspace. Let L̂ =
(ˆ̀

1, · · · , ˆ̀
k) be the expected risks of H = {h1, · · · , hk} on

exact subspace X̂ . For each hypothesis hi (i ∈ [k]), ˆ̀
i is

defined as follow,
ˆ̀
i

def
=
∑
x∈X̂

Pr
x0∼D

[x0 = x]L (h(x), f(x)) (9)

We assume the expected risks on the exact subspace can be com-
puted via an algorithm Exact that returns (λ̂, ˆ̀

1, ˆ̀
2, · · · , ˆ̀

k), in
which, for all i ∈ [k], ˆ̀

i is computed as in Eq. 9. An efficient
partitioning of the sample space will need to provide close
estimations for all the hypotheses in H.
Approximate subspace. The approximate subspace X̃ = X\X̂
contains the samples outside the exact subspace. We assume

that there exists an effective algorithm to draw samples from
the approximate subspace X̃ . Let D̃ be a distribution over the
approximate subspace X̃ , where the probability of a sample
x ∈ X̃ is

Pr
x0∼D̃

[x0 = x] =
1

λ
Pr
x0∼D

[x0 = x]. (10)

For each hypothesis hi ∈ H (i ∈ [k]), we denote R̃(hi) as
the expected risk of h on the distribution D̃, i.e.,

R̃(hi) =
∑
x∈X̃

Pr
x0∼D̃

[x0 = x]L (h(x), f(x)) . (11)

Let ε′ = ε/λ and (˜̀
1, · · · , ˜̀

n) be an (ε′, δ)-estimation of the
expected risk on the distribution D̃, i.e.,

Pr
[
∀i ∈ [k], |R̃(hi)− ˜̀

i| < ε′
]
≥ 1− δ. (12)

Lemma 2. For any partition of X = X̂ ∪ X̃ . Let (ˆ̀
1, · · · , ˆ̀

n)
be the expected risks on exact subspace X̂ (see Eq.9). Let R̃(hi)
be the expected risk of a hypothesis hi on the approximate
subspace X̃ (see Eq.11). Then, we have

∀i ∈ [k], ˆ̀
i + R̃(hi) = R(hi).

C. Risk Estimation in the Approximate Subspace

To estimate the risk within the approximate subspace we
adopt two theoretical machine learning tools, namely, adaptive
sampling and Vapnik–Chervonenkis (VC) dimension.
Adaptive sampling. We apply empirical Bernstein’ inequality
[13] to construct an adaptive sampling method to estimate
expected risk on the approximate subspace.

We allocate the error probability δi for each hypothesis hi
such that

k∑
i=1

2δi =
δ

dlog(Nmax

N0
)e
. (13)

To minimize the number of iterations, we optimize the
allocation of δi as follows. We first compute a sample variance
vi for each hypothesis hi by taking N0 = c

ε′2 ln 1/δ number
of samples. Note that, the samples here are independent with
the samples in X . For each hypothesis hi, we use the sample
variance vi and set εi = ε for all εi, to compute δi that satisfies
Eq.15 (this can be done by binary search). After that, we
rescale δi such that Eq. 13 is satisfied.

Next, we compute the empirical risk. Initially, we have a
list of N0 samples. After each iteration, we double the number
of samples and measure the current error probability using
empirical Bernstein’ inequality [13].

Lemma 3 (Empirical Bernstein’ inequality (Theorem 4 [13]).
Let z = (z1, z2, · · · , zN) be a vector of independent identically
random variables. Let µ be the expected value of a random
variable zj (j ∈ [N]) and δ0 ∈ (0, 1). Then, we have,

Pr
[
µ− 1

N

N∑
j=1

zj ≤ ε(N, δ0, V ar(z))
]
≥ 1− δ0, (14)

where

ε(N, δ0, V ar(z)) =

√
1/N

(
2V ar (z) ln

2

δ0

)
+ 7ln

2

δ0
/3N

and V ar(z) is the sample variance

V ar(z) =
1

N(N − 1)

∑
1≤j1<j2≤N

(zj1 − zj2)2.

In Lemma 3, we only show one-sided error. We can show
the errors on both sides by considering the random variables
z′j = 1− zj . Then, using union bound, we have

Pr
[∣∣∣µ− 1/N

N∑
j=1

zj

∣∣∣ ≤ ε(N, δ0, V ar(z))
]
≥ 1− 2δ0

Let x = (x1, · · · , xN) be the current list of samples. For
each hypothesis hi, let z(i) = (z

(i)
1 · · · , z

(i)
N) be the list of

random variables for hi, where
z
(i)
j = L(hi(xj), f(xj))

We compute the error εi for each hypothesis hi base on δi
and sample variance V (z(i)) as in Lemma 3, i.e.,

εi = ε(N, δi, V ar(z
(i))) (15)

If the maximum value of εi is smaller than or equal to ε′,
we stop the algorithm and take the current estimation of the
expected risks.
Reducing sample complexity using VC-dimension. We
can reduce the number of samples using VC-dimension, a
standard complexity measure for concept classes in probably
approximately correct (PAC) learning [14].

Intuitively, VC-dimension measures the capacity of a hy-
pothesis class. It is defined as the cardinality of the largest set
of points that the algorithm can shatter.
Definition 1 (VC-dimension). For any subset S =
{x1, · · · , xw} ⊆ X , let HS = {(h(x1), · · · , h(xw)) : h ∈ H}
be the restriction of H to S. We say H shatters S if the
restriction of H to S is the set of all functions from S to
{0, 1}, i.e., |HS | = 2w. The VC-dimension of a hypothesis
class H, denoted V C(H) is the maximum size of a set S ⊆ X
that can be shattered by H.

For example, consider a two-dimensional binary classifica-
tion problem where we need to label each point in a two-
dimensional plane as positive (or 1) or negative (or 0). Here,
each hypothesis h ∈ h is a straight line in which all data points
above the line are labeled as positive and all data points below
the line are labeled as negative. We say the hypothesis class H
shatters a set of points (samples) S if for any labeling on S, we
can always find a hypothesis to separate positive data points
from negative data points. We now show that the VC-dimension
V C(H) = 3. Indeed, there exist a set of 3 points that can be
shattered by H (see Fig. 1a)). Plus, by Radon’s theorem [42],
we can divide the four points into two subsets with intersecting
convex hulls. Thus, it is not possible to separate the two subsets
with a straight line (see Fig. 1b)).

a) A set of 3 points that can be shattered. We can
always find a hypothesis to separate positive data
points from negative data points.

b) Any set of
4 points can-
not be shat-
tered.

Fig. 1: The VC-dimension of the class H of threshold functions.

We can bound the number of samples using VC-dimension
as follows.

Lemma 4 (THEOREM 6.8 in [14]). Given a hypothesis space
H , defined over sample space X , such that hi : X → Y
for ∀hi ∈ H . V C(H) is the VC dimension of H . Let
x = (x1, · · · , xN) be a collection of independent identically
distributed random events, taken from sample space X , selected
by probability p. We can obtain an (ε, δ)-estimation of the
expected risk with

N =
c

ε2
(V C(H) + ln

1

δ
), (16)

where constant c is approximately 0.5.

Thus, we can obtain an (ε, δ)-estimation of the expected risk
with N = c

ε2 (SC(H) + ln 1
δ) samples.

Now, we present a bound for the VC-dimension of a
hypothesis class H.

Lemma 5. For a sample x ∈ X , let π(x) be the number of hy-
potheses h ∈ H such that h(x) = 1. Let πmax = maxx∈X π(x).

V C(H) ≤ blog(πmax)c+ 1.

D. Correctness and Complexity.

We first state the correctness of our framework in providing
theoretical guarantee on the estimation error.

Theorem 6. Consider a distribution D over the sample space
X , where the probability of a sample x ∈ X is p(x), a label
space Y , a label function f , and a hypothesis class H =
{h1, · · · , hk}. If Algorithm Exact returns the expected risks
on the exact subspace as in Eq. 9, and Algorithm Gen return
a random sample x ∼ (X̃ , p). Then, (`1, `2, · · · , `k), returned
by Algorithm 1, is an (ε, δ)-estimation of the expected risks
i.e.,

Pr [∀i ∈ [k], |R(hi)− `i| < ε] ≥ 1− δ.
The sample complexity is a function of the weight of

the approximate space, i.e., λ and the VC-dimension of the
hypotheses V C(H).

Lemma 7. The worst-case number of samples in Algorithm 1
is cλ2

ε2
(V C(H) + ln 1/δ), (17)

which is reduced by a factor of 1/λ2, in comparison with the
direct estimation approach.

Variance reduction analysis. We show that our SaPHyRa
framework results in random variables with generally smaller
variances. Thus, the expected risks can be estimated with fewer
samples. From Eq. 15, if the variance is reduced by a factor
of α, we can also reduce the number of samples by a factor
of approximately α to achieve the same error. Indeed, in Eq.
15, the first part is Θ(

√
N) times bigger than the second part.

Thus, if N is big enough, we can approximate

N ≈ ε2i
(

2V ar
(
z(i)
)
ln

2

δi

)
.

Let Z(i) be the random variable that represents the output
of the loss function of hi on a sample that is drawn from the
distribution D̃. Let Z ′(i) be the random variable that represents
the output of the loss function of hi on a sample that is drawn
from the distribution D. Let ˆ̀

i = µ̂i be expected risk on

the exact subspace of hi. Let V ar(Z(i)), V ar(Z ′(i)) be the
variances of Z(i), Z ′(i). The expected value of Z ′(i) and Z(i)

are µi and µi − µ̂i, respectively. Recall that, in this work,
we consider 0-1 loss function. Thus, Z ′(i) and Z(i) Bernoulli
random variable. Hence, we have, V ar(Z ′(i)) = µi(1−µi), and
V ar(Z(i)) = (µi − µ̂i)(1− µi + µ̂i). Therefore, the reduction
in the variance is

V ar(Z(i))

V ar(Z ′(i))
=

µi(1− µi)
(µi − µ̂i)(1− µi + µ̂i)

Claim 8. Consider a hypothesis hi ∈ H in which the expected
risk µi < 1/2. We have, V ar(Z(i)) < V ar(Z ′(i)). Specifically,
if µi � 1, we have

V ar(Z(i))

V ar(Z ′(i))
≈ µi
µi − µ̂i

In this work, we assume the expected risk µi of any
hypothesis hi ∈ H is smaller than 1/2. Here, 1/2 is the
expected risk of a baseline hypothesis that randomly output 0
and 1 with the same probability. In this case, µi

µi−µ̂i
< 1. From

claim 8, the random variables in SaPHyRa framework have
smaller random variables. In other words, SaPHyRa framework
uses a smaller number of samples to achieve the same error
guarantee.

IV. SAPHYRAbc: RANKING NODE SUBSET WITH
BETWEENNESS CENTRALITY

In this section, we describe SaPHyRabc algorithm, an
application of SaPHyRa framework for RSPbc. We start by
introducing an auxiliary sample space, call intra-component
shortest path (ISP). The ISP sample space is constructed by
breaking shortest paths to intra-component shortest paths in
which all nodes must belong to the same bi-component. In
SaPHyRabc algorithm, we select the exact subspace as the
set of all 2-hop shortest paths that go through a node in
the subset of target nodes and propose and algorithm that
efficiently computes the expected risks on the exact subspace.
For the approximate subspace, use the sampling method that
is described in Subsection III-C to estimate the expected risk.
We also present a tight bound on the VC dimension that is
based on the characteristics of the subset.
A. Sample Space for RSPbc

We start by introducing an auxiliary sample space, termed
intra-component shortest paths (ISP), that contains the shortest
paths with all nodes belong to the the same bicomponent.

Given the target nodes, our sample space will be a “per-
sonalized” version of the ISP, obtained by removing shortest
paths that have no connections to the target nodes.
ISP sample space. The ISP sample space consists of intra-
component shortest paths, i.e., the shortest path in which source
node and the destination node belong to the same bi-component
[43]. Xc =

⋃
s′,t′ in same bi-component

P (s′, t′)

Bi-component and block-cut tree. A bi-component is a
maximal “nonseparable” subgraph, i.e., if any one node is
removed, the subgraph still remain connected. We denote
C = {C1, C2, · · · , C`} (` ≥ 1) as the set of bi-components

e

b

a c

d

f

g

h

i

j

k

Cutpoint Regular node

a) A graph G.

b

a c

d

e

d

f

i

j

k

c

g

h

d
i

b) Bi-components.

d

c

i

c) Block-cut tree.

Fig. 2: Bi-components in a graph G a) Cutpoints whose removal increase the number of bi-components b) Five bi-components
in G c) Block-cut tree of G, created by adding a vertex for each bi-component and each cutpoint in G, and adding an edge for
each pair of a bi-component and a cutpoint that belongs to that bi-component.

of G. Usually, each node in the graph belongs to exactly
one bi-component. The nodes that belong to more than
one bi-component are referred as cutpoints. The removal
of a cutpoint makes the graph disconnected. The structure
of the bi-components and cutpoints can be described by
a tree GT = (VT , ET), called the block-cut tree [44].
The set of nodes VT consists of all bi-components and
cutpoints. Each edge in ET is a pair of bi-component and
a cutpoint that belongs to that bi-component. For example,
in Fig. 2, VT = {C1, C2, C3, C4, C5, c, d, i} and ET =
{(c, C1), (c, C2), (d,C1), (d,C3), (d,C5), (i, C4), (i, C5)}.
This tree has a node for each bi-component and for each
cutpoint of the given graph. There is an edge in the block-cut
tree for each pair of a bi-component and a cutpoint that
belongs to that component.
Breaking a shortest path into intra-component shortest paths.
We construct the ISP sample space by dividing each shortest
path into multiple intra-component shortest paths such that two
consecutive intra-component shortest paths belong to different
bi-component. In other words, an intra-component shortest
path p′ ∈ Xc in a bi-component Ci is a part of a shortest path
p ∈ Xb if p′ is the maximal intra-component shortest path in p
that belongs to the bi-component Ci. We denote I(p) as the set
of intra-component shortest paths when we break the shortest
path p.

The ISP distribution Dc over the ISP sample space Xc is
defined as

Pr
x∼Dc

[x = p′] =
1

γ
× Pr
p∼Db

[p′ ∈ I(p)],

where γ is the normalizing factor that will be given in Eq.19
to ensure the sum of all probabilities equals 1.
ISP distribution. To compute ISP distribution, we introduce
the definition of out reach set as follows.
Out reach set. The out reach set Ri(v) of a node v, regarding
to a bi-component Ci is the set of all nodes u that can be
reach by v without going through any nodes in Ci. If v is not
a cutpoint, the out reach set Ri(v) only consists of the node v
itself. If v is a cutpoint, the out reach set Ri(v) consists of the
node v itself and all nodes u that belong to a bi-component Cj
that can be reach by v in the block-cut tree GT without going
through Ci. We can compute the out reach of all cutpoints with
the time complexity of O(|V ′|) using dynamic programming.

Claim 9. Consider a bi-component Ci ∈ C, each v ∈ V
belongs to exactly one out reach set of a node u, regrading to
Ci

For Claim 9, for any bi-component Ci ∈ C, we have∑
v∈Ci

ri(v) = n (18)

Given a bi-component Ci, for any pair of node s′ 6= t′ and
s′, t′ ∈ Ci, let

Claim 10. For any intra-component shortest paths p′, p′′ ∈
Ps′t′ , we have,

Pr
p∼Db

[p′ ∈ I(p)] = Pr
p∼Db

[p′′ ∈ I(p)]

Let qs′t′ = Pr
p∼Db

[p′ ∈ Ps′t′ and p′ ∈ I(p)]

From Claim 10, ∀p′ ∈ Ps′t′ , we have

Pr
p∼Db

[p′ ∈ I(p)] =
1

σs′t′

∑
p′′∈Ps′t′

Pr
p∼Db

[p′′ ∈ I(p)] =
1

σs′t′
qs′t′

Lemma 11. Consider an intra-component shortest path p′

from s′ to t′, where s′, t′ ∈ Ci. If p′ is a part of a shortest p
from s to t, then the s ∈ Ri(s′) and t ∈ Ri(t′)

Lemma 12. Consider two node s′, t′ ∈ Ci. Consider a shortest
path p from s to t, where s ∈ Ri(s′) and t ∈ Ri(t′). Then,
intra-component shortest path p′ from s′ to t′ such that p′ is a
part of p. Consider an intra-component shortest path p′ from
s′ to t′. If p′ is a part of a shortest p from s to t, then the
s ∈ Ri(s′) and t ∈ Ri(t′)

From Lemma 11 and Lemma 12, we have

qs′t′ =
1

n(n− 1)
| Ri(s′) | × | Ri(t′) |=

1

n(n− 1)
ri(s

′)ri(t
′).

Let γ be the sum of qst for all pair s, t, i.e.,

γ =
∑̀
i=1

∑
s6=t∈Ci

qst =
1

n(n− 1)

∑̀
i=1

∑
s∈Ci

ri(s)(n− ri(s))

(19)

To compute γ, we iterate through all bi-components and for
each bi-component Ci, we iterate through all nodes in Ci. This
can be done in O(n).

For an intra-component shortest path p′ from s′ to t′, we
have

Pr
x∼Dc

[x = p′] =
1

γ

1

σs′t′
qs′t′ (20)

Betweenness centrality for cutpoints. When we break a shortest
path into multiple intra-component shortest paths, the target
node of the previous intra-component shortest path is the source
node of the next intra-component shortest path. We refer to
those nodes as break points. Since the break points belong to
more than one bi-component, they must be cutpoints.

The break points were inner nodes in the original shortest
path but they are not accounted when we compute the
betweenness centrality on the ISP sample space.

For a cutpoint v, let bc(v) be the probability that v is a
break point of a shortest path p ∈ Xb.

bca(v) = Pr
p∼Db

[v is a break point of p].

Lemma 13. For any node v ∈ V ,
bc(v) = Ep∼Db

g(v, p) = γEp∼Dc
g(v, p) + bca(v),

where g(v, p) = 1 if v is an inner node of p (see Eq. 6)

Next, we show how to compute the value of bca(v) for
a cutpoint v. Consider the block-cut tree GT and take v as
the root node of GT . By removing the root node v, we can
divide GT into multiple subtrees where the root nodes of those
subtrees are the bi-components that v belongs to. The node v
is a break point of a shortest path p from s to t if the source
node s and the target node t belong to two difference subtrees.

Formally, let Ti(v) be the set of nodes (except v) that belong
a bi-component in the subtree in which Ci is the root node.
We have,

Ti(v) = V \Ri(v) and
⋃

i∈[`]:v∈Ci

Ti(v) = V \ {v}.

Lemma 14. A node v ∈ V is a break point of a shortest path
p from s ∈ Ti(v) to t ∈ Ti(j) if i 6= j.

From Lemma 14, we have,
bca(v) =

1

n(n− 1)

∑
Ci∈C|v∈Ci

|Ti(v)|
∑

Cj∈C\{Ci}|v∈Cj

|Tj(v)|

=
1

n(n− 1)
(ri(v)− 1)(n− ri(v)) (21)

Personalized ISP (PISP) Sample Space. Given a subset
A ⊆ V , we construct a personalized sample space by taking
the necessary samples in the ISP sample space. Specifically,
the personalized ISP sample space X (A)

c consists of all shortest
paths from s to t such that both s, t belong to some bi-
component Cj that contains at least one node in A.

Formally, let I(A) = {i ∈ [`] : Ci ∩ A 6= ∅} be the set of
the index of bi-components that contains at least one node in
the subset A. We have

X (A)
c =

⋃
i∈I(A)

⋃
s′ 6=t′∈Ci

P (s′, t′) (22)

Let η be the probability that a shortest path in the ISP
sample space Xc belongs to the PISP sample space X (A)

c , i.e.,

η = Pr
x∼Dc

[x ∈ X (A)
c] =

∑
i∈I(A)

∑
s6=t∈Ci

qst∑`
i=1

∑
s 6=t∈Ci

qst
(23)

=

∑
i∈I(A)

∑
s∈Ci

ri(s)(n− ri(s))∑`
i=1

∑
s∈Ci

ri(s)(n− ri(s))

We can compute η in O(n) (similar with computing γ).
We define The PISP distribution D(A)

c over the PISP sample
space X (A)

c as follows. For any i ∈ I(A),∀(s, t) ∈ Ci,∀p ∈
Pst,

Pr
x∼D(A)

c

[x = p′] =
1

η
× Pr
x∼Dc

[x = p′] =
1

σst

qst
γη
, (24)

Lemma 15. For any node v ∈ A, we have,
bc(v) = γηE

p∼D(A)
c
g(v, p) + bca(v) (25)

B. Sample space partitioning for RSPbc
Now, we show how to model the betweenness centrality

ranking problem as a hypothesis ranking problem and how to
apply the SaPHyRa framework.

Here, we consider a binary label space
Yc = {0, 1}, (26)

the labeling function fc always returns 0, i.e.,
fc(x) = 0,∀x ∈ X (A)

c , (27)
and the hypothesis class

H(A)
c = {hv

def
= g(v, ·)}v∈A (28)

where g is given in Eq. 6, i.e., hv(p) = 1 if v is an inner node
of p.

As fc = 0,∀x ∈ X (A)
c , we have, L(hv(x), fc(x)) = hv(x).

We denote R(A)
c (hv) as the expected risk of the hypothesis

hv , i.e.,
R(A)
c (hv) =

∑
p∈X (A)

c

Pr
x∼D(A)

c

[x = p]L (hv(p), fc(p))

Lemma 16. For any node v ∈ A, we have,

bc(v) = γηR(A)
c (hv) + bca(v)

Following SaPHyRa framework, we divide X (A)
c into exact

subspace and approximate subspace.
Exact subspace. We choose the exact subspace is the set of
all shortest paths p that have the length equals 2 (len(p) = 2)
and there exists a node v ∈ A such that v is an inner node of
p (g(v, p) = 1).
X̂ (A)
c = {p ∈ X (A)

c | len(p) = 2 and ∃v ∈ A s.t. g(v, p) = 1}
(29)

For a node v ∈ A, the expected risk of hv on the exact
subspace is computed as follows

ˆ̀
v =

∑
p∈X̂ (A)

c

Pr
x∼D(A)

c

[x = p]L (hv(p), fc(p))

Here, we present the Exactbc algorithm to efficiently
compute the expected risks on the exact subspace. Let B be
the set of all neighbors of nodes in A. For each bi-component
Ci, for each source node s ∈ B ∩ Ci, we execute two phases
as follows. In the first phase, we find all the shortest paths of
length 2 from s to t ∈ B ∩ A. Let ∆s be the set of nodes t
such that the distance from s to t is 2 (i.e., dst = 2). For a
node t ∈ ∆s, we denote wt as the number of shortest paths
from s to t. Initially, all we set wt = 0, for all t ∈ B. To find
the value of wt, we iterate through all neighbors v of s, then
iterate through all neighbors t of v. If t is not a neighbor of s,
i.e., dst = 2, we add t to ∆s and increase the value of wt by 1.
In the second phase, we calculate the two-hop expected risks
on the exact subspace of all nodes v ∈ A based on the number

of shortest paths that we found in the first phase. Due to the
space limitation, we present the pseudocode of SaPHyRabc
algorithm in the Appendix of the full version [41].
Lemma 17. Let {ˆ̀v}v∈A and Q̂/Q be the output of Algorithm
Exactbc. For all node v ∈ A, we have

ˆ̀
v =

∑
x∈X̂

Pr
x∼D(A)

c

[x = p]L (hv(p), fc(p))

Pr
x∼D(A)

c

[x ∈ X̂ (A)
c] = λ̂

Lemma 18. Algorithm Exactbc has the time complexity of
O(K), where

K =
∑
v∈B

deg(v)2.

Here, deg(v) = |Adj(v)| is the degree of v.

Note that, the expected risks on the exact subspace provide
“non-empty” estimations for the expected risks.
Lemma 19. For all node v ∈ V , we have

If R(A)
c (hv) > 0, then ˆ̀

v > 0.

Approximate subspace. The approximate subspace is the set
of the remaining shortest paths after removing the shortest path
in the exact subspace, i.e.,

X̃ (A)
c = X (A)

c \ X̂ (A)
c (30)

We define the distribution D̃(A)
c over the approximate subspace

X̃ (A)
c , where the probability to select a path p′ from s′ to t′ is

Pr
x∼D̃(A)

c

[x = p′] =
1

1− λ̂
Pr

x∼D(A)
c

[x = p′] =
1

1− λ̂
1

γ

1

σs′t′
qs′t′

(31)

The expected risk on the approximate subspace X̃ (A)
c is

computed as follows
R̃(A)
c (hv) =

∑
x∈X̃ (A)

c

Pr
x∼D̃(A)

c

[x = p]L (hv(x), fc(x)) (32)

C. Risk Estimation in the Approximate Space

We use the same techniques in Subsection III-C to estimate
the expected risk of the hypotheses in the approximate space.
Here, we present an algorithm to generate samples in the
approximate space and show a bound VC dimension, thus,
obtaining a stronger bound on sample complexity.
Generating samples. We use rejection sampling and multistage
sampling techniques to generate samples in the approximate
space.
Rejection sampling. We apply a rejection sampling method to
sample a shortest path p from X̃ (A)

c by repeating sampling a
shortest path p from X (A)

c until p /∈ X̂ (A)
c .

Multistage sampling. We use a multistage sampling method to
reduce the space complexity of O(n). Our multistage sampling
method consists of 4 steps (please see Algorithm 2). First, we
pick a bi-component Ci with probability Pr

x∼D(A)
c

[x ∈ Ci].
Secondly, we pick a source node s ∈ Ci with probability
Pr[s|x ∈ Ci]. Thirdly, we pick a target node t ∈ Ci \ {s} with
probability Pr[t|s]. Finally, we pick a shortest path p from s to
t with probability Pr[p|st]. By using the multistage sampling
method as above, the probability that we pick a shortest path
p from s to t in a bi-component Ci is

Algorithm 2: Algorithm Genbc
Input : A graph G, its set of bi-components C, and a

subset A
Output : A sample p as a random shortest path in the

estimation subspace X̃ (A)
c with the probability

propositional to the probability distribution
p
(A)
c

1 repeat
2 Pick a i ∈ I(A) randomly with probability

Pr
x∼D(A)

c
[x ∈ Ci] =

n2−
∑

s∈Ci
ri(s)

2

γη

3 Pick a source node s ∈ Ci randomly with
probability Pr[s|x ∈ Ci] = ri(s)(n−ri(s))

n2−
∑

s∈C ri(s)
2

4 Pick a target node t ∈ Ci \ {s} randomly with
probability Pr[t|s] = ri(t)

n−ri(s)
5 Uniformly pick a shortest path p from s to t, i.e.,

Pr[p|st] = 1
σst

;
6 until p /∈ X̂ (A)

c ;
7 Return p

Pr
x∼D(A)

c

[x ∈ Ci]×Pr[s|x ∈ Ci]×Pr[t|s]×Pr[p|st] =
1

σst

qst
γη

To uniformly sample a shortest path p from s to t, we
perform a balanced bidirectional BFS (breadth-first search)
[12] to find all shortest paths from s. We execute two BFSs
from both the source node s and the target node t, in such a
way that the two BFSs are likely to explore about the same
number of edges. When the two BFSs “touch each other”, we
can obtain the distance and all the shortest paths from s to t.
Lemma 20. The probability that algorithm Genbc returns a
shortest path p′ from s′ to t′ with probability

Pr
x∼D̃(A)

c

[x = p′] =
1

1− λ̂
1

γ

1

σs′t′
qs′t′ .

Borassi et al. [12] analyze the time complexity of balanced
bidirectional BFS in a random graph as follows.
Lemma 21 (Theorem 4 [12]). Let G be a graph generated
through the aforementioned models[12]. For each pair of
nodes s, t, w.h.p., the time needed to compute an st-shortest
path through a bidirectional BFS is (n

1
2+o(1)) if the degree

distribution has finite second moment.

Personalized VC dimension and Sample Complexity. Here,
we show the analysis for the VC dimension on the personalized
ISP sample space. By using the bi-component-based sampling
method, we can reduce the VC-dimension from log of the
diameter of the graph [45] to log of maximum diameter of a
bi-component in the graph. Further, for a specific subset of
nodes, we can further reduce the VC-dimension based on the
properties of the subset.

For a shortest path p ∈ X (A)
c , let π(p) be the number of

hypotheses hv ∈ H(A)
c such that hv(p) = 1. From Eq. 6,

hv(p) = 1 iff v is an inner node in p. Thus, π(p) is the
number of nodes in A that are inner nodes of p. Recall that, in
Lemma 5, we have shown that V C(H(A)

c) ≤ blog(πmax)c+ 1,

Subset Full network Any subset A l-hop neighbors
Riondato et al.[45] blog(V D(V)− 1)c+ 1 blog(V D(V)− 1)c+ 1 blog(V D(V)− 1)c+ 1

SaPHyRabc blog(BD(V)− 1)c+ 1 blog(BS(A))c+ 1 blog(2l + 1)c+ 1

TABLE I: The comparison on the bound of the VC-dimension. Here V D(V) is the diameter of the graph, BD(V) is the
maximum diameter of a bicomponent of the graph, and BS(A) is the maximum number of nodes A that appear in the same
shortest path.

where πmax = maxx∈X π(x). Thus, we have the following
corollary.
Corollary 22. Let BS(A) be the maximum number of nodes
in A that are inner nodes of a shortest path in X̃ (A)

c . Let H(A)
c

is defined as in Eq. 28 We have,

V C(H(A)
c) ≤ blog(BS(A))c+ 1 (33)

Note that, it is expensive to compute the exact value of
BS(A). Thus, we bound the value of BS(A) as follows.

Lemma 23. For a subset of nodes A′ ⊆ V , let V D(A′) =
maxs,t∈A′ dst be the diameter of A′. We have,

BS(A) ≤ `
max
i=1

(min(V D(Ci)− 1, V D(A ∩ Ci),+1, |A ∩ Ci|))
(34)

We can simplify the bound for BS(A) based on the
maximum diameter of a bi-component

BD(V) =
`

max
i=1

V D(Ci) (35)

and the maximum distance between any two nodes in the same
bi-component in A

SD(A) =
`

max
i=1

V D(A ∩ Ci). (36)
Indeed, from Eq. 34, we have,
BS(A) ≤ min(

`
max
i=1

V D(Ci)− 1,
`

max
i=1

V D(A ∩ Ci) + 1)

= min(BD(V)− 1, SD(A) + 1)

We bound the diameter of a subset of nodes A′ as follows.
We pick a random source nodes s and perform a breadth-first
search [46] to find the distance from s to all other node in
A′. The diameter of A′ cannot be bigger than double of the
maximum distance from s to a node t ∈ A′, i.e.,

∀s ∈ A′, V D(A′) ≤ 2 max
t∈A′

dst

Comparison on the bound of the VC-dimension. In Table I,
we compare the VC-dimension of SaPHyRabc and the work in
[45]. In Riondato et al.[45], the VC-dimension equals on log of
the diameter V D(V) of the network. In SaPHyRabc, by using
the bi-component-based sampling method, on the full network,
the VC-dimension reduces to log of the maximum diameter
BD(V) of a bi-component in the network. On a subset A, the
VC-dimension further reduces to log the maximum distance
between two nodes in A that belong to the same bi-component.
Specifically, if A is a subset of l-hop neighbors of a node v,
the VC-dimension equals log of 2l + 1.

D. SaPHyRabc algorithm
We now describe SaPHyRabc algorithm. At the beginning,

we decompose graph G into bi-components {C1, . . . , C`} and
compute that out reach for each node. This can be done in
O(m+ n). We define X (A)

c , fc,D(A)
c , H

(A)
c as in Eq. 22, Eq.

27, Eq. 24, Eq. 28, respectively. The sample space X (A)
c is

partitioned into X̂ (A)
c ∪ X̃ (A)

c where

X̂ (A)
c = {p ∈ X (A)

c | len(p) = 2 and ∃v ∈ A s.t. g(v, p) = 1}
X̃ (A)
c = X (A)

c \ X̂ (A)
c

Then, we compute γ, η as in Eq. 19, Eq. 23, respectively. The
computation of γ, η can be done in O(n). Let ε∗ = εγη. We
obtain the estimation {`v}v∈A by running SaPHyRa with input
(X (A)

c , p
(A)
c , fc,H(A)

c , ε∗, δ), a partition X (A)
c = X̂ (A)

c ∪ X̃ (A)
c .

In SaPHyRabcalgorithm, we use algorithm Exactbc to compute
the compute the expected risks on the exact subspace, and
algorithm Genbc to generate a sample.

For each node v ∈ V , we compute bca (v) as in Eq.21 as
output an estimation for the betweenness centrality

b̃c(v) = bca (v) + γη`v.

Due to space limitations, we present the pseudocode of
SaPHyRabc algorithm in the Appendix of the full version [41].

E. Correctness and Complexity.

Theorem 24. Let {b̃c(v)}v∈A be the estimation that is returned
by SaPHyRabc algorithm. We have

Pr
[
∀v ∈ A, b̃c(v)− bc(v)| < ε

]
≥ 1− δ.

Lemma 25. Let G be a graph generated through the aforemen-
tioned models[12]. SaPHyRabc algorithm has a time complexity
of O(m+ n+K + 1

ε2 (blog(BS(A))c+ 1 + ln 1
δ)n1/2+o(1)),

Note that, due to the space limitation, here, we omit the
proofs of the lemmas. The detailed proofs are presented in the
Appendix of the full version [41].

V. EXPERIMENTS
A. Experiments settings

Algorithms. We compare SaPHyRabc algorithm, that is de-
scribed in Subsection IV-D, with ABRA [47] (that uses node-
pair sampling) and KADABRA [12] (that uses path sampling
with bi-directed BFS). Note that, both ABRA and KADABRA
can only estimate the betweenness centrality for the whole
network. We also show the experiment result on SaPHyRabc-
full, i.e., the SaPHyRabc algorithm with the subset of nodes is
the whole network.

TABLE II: Networks’ summary.
Networks #Nodes #Edges Diam.
Flickr 1.6 M 15.5 M 24
LiveJournal 5.2 M 49.2 M 23
USA-road 23.9 M 58.3 M 1524
Orkut 3.1 M 117.2 M 10

Networks and subsets. We use 4 real-world networks from
[48, 49] as shown in Table II. We ignore the information on
the weight and direction of the edges, treating the networks
as undirected and unweighted. Unless otherwise mentioned,

0.2 0.1 0.05 0.02 0.01
Epsilon

101

103

Ru
nn

in
g

tim
e

(s
)

ABRA KADABRA SaPHyRabc-full SaPHyRabc

0.2 0.1 0.05 0.02 0.01
Epsilon

101

103

Ru
nn

in
g

tim
e

(s
)

a) Flickr

0.2 0.1 0.05 0.02 0.01
Epsilon

101

103

Ru
nn

in
g

tim
e

(s
)

b) LiveJournal

0.2 0.1 0.05 0.02 0.01
Epsilon

101

103

Ru
nn

in
g

tim
e

(s
)

c) USA-road

0.2 0.1 0.05 0.02 0.01
Epsilon

101

103

Ru
nn

in
g

tim
e

(s
)

d) Orkut

Fig. 3: Running time (log-scale). The shaded areas show the 95% confident intervals of SaPHyRa over different target subsets.

0.2 0.1 0.05 0.02 0.01
Epsilon

0.0

0.5

1.0

Ra
nk

 c
or

el
at

io
n

a) Flickr

0.2 0.1 0.05 0.02 0.01
Epsilon

0.0

0.5

1.0

Ra
nk

 c
or

re
la

tio
n

b) Livejournal

0.2 0.1 0.05 0.02 0.01
Epsilon

0

0.5

1

Ra
nk

 c
or

re
la

tio
n

c) USA-road

0.2 0.1 0.05 0.02 0.01
Epsilon

0

0.5

1

Ra
nk

 c
or

re
la

tio
n

d) Orkut
Fig. 4: Rank correlation at different error guarantees ε. Shading areas show the 95% confident intervals.

in our experiments, we select 1000 different subsets in which
each subset consists of 100 random nodes. We set ε to 0.05
and δ to 0.01.
Ground truth. We use the ground truth for Flickr, LiveJournal,
and Orkut provided in [21]. The ground truth was found in
[21] by running a parallel version of the Brandes algorithm
on a Cray XC40 supercomputer with 96,000 CPU cores and
roughly 400TB of RAM. It took 2 million core hours (or
roughly 10 years of calculations) to complete the calculation
for 20 networks [21]. We obtain the ground truth for USA-road
network using a parallel version of the Brandes’s algorithm on
our server with 96 Xeon E7-8894 CPUs (and 6TB memory)
in about 2 weeks.
Metrics. We compare the performance of the algorithms based
on the following metrics.
• Running time. Here, we exclude the time to load the

network when we measure the running time.
• Rank quality. For rank quality, we compute the Spearman’s

rank correlation (see Eq.1) between the estimation and
the ground truth. Note that, when we compute the rank of
nodes, if there are two nodes with the same betweenness
centrality, we break the tie by the nodes’ IDs.

• (Signed) relative error. For a node v, let bc(v) be the
betweenness centrality of v and b̃c(v) be the estimation,
the relative error is given as

(
b̃c(v)
bc(v) − 1

)
× 100%. In the

case where bc(v) = 0, if b̃c(v) = 0, the relative error is
0. Otherwise, the relative error is ∞.

Environment. We implemented our algorithms in C++ and
obtained the implementations of others from the corresponding
authors. We conducted all experiments on a CentOS machine
Intel(R) Xeon(R) CPU E7-8894 v4 2.40GHz. We set the time
limit to 10h (36,000s).

B. Experiment results

First, we run an experiment with varying ε ∈
{0.2, 0.1, 0.05, 0.02, 0.01} and δ = 0.01. We select 1, 000
different subset in which each subset consists of 100 random
nodes.

Running time. From Fig. 3, the running time of SaPHyRabc
7 − 235 times smaller than KADABRA and 90 − 425 times
faster than ABRA. In 10 hours, ABRA can not finish in 5
cases and KADABRA can not finish in 2 cases.

Furthermore, the running time of SaPHyRabc on a set of
target nodes is also better than the running time of SaPHyRabc-
full. Indeed, on average SaPHyRabc runs 4− 11 times faster
than SaPHyRabc-full.
Rank correlation. SaPHyRabc and SaPHyRabc-full always
provides a better ranking correlation, in comparison with ABRA
and KADABRA (see Fig. 4). For example, in LiveJournal
graph, for ε = 0.05, the Spearman’s rank correlation of the
estimation of SaPHyRabc and the ground truth is 0.84. The
rank correlation of the estimation of ABRA and KADABRA
are 0.13, 0.09, respectively. Furthermore, the rank quality of
ABRA and KADABRA are widely varying. For example, for
ε = 0.05, the rank correlation of ABRA varies from 0.12 to
0.63 and the rank correlation of KADABRA varies from 0.02
to 0.58.

We also run an experiment with fixed ε = 0.05 and varying
subset size from 10 to 100. As shown in Fig. 5, the varying
range of the rank quality of ABRA and KADABRA increases
as the subset size decreases.
Relative error. We measure the relative error in an experiment
where ε = 0.05 and the subset size is 100. In Fig. 6, we show
the histogram of the relative error of the estimations with the
ground truth. Here, we group all nodes that have relative error
bigger than 150% to a single bucket.

From Fig. 6, we observe that for ABRAand KADABRA,
more 95% of nodes that have the relative error equal either
0 or −100%. A close investigation reveal that those are the
nodes with an estimated centrality zero. Those can be further
divided into true zeros: nodes with betweeness centrality that
are correctly estimated as zeros and false zeros: nodes with
positive betweenness centrality that are incorrectly estimated
as zeros.

Combine with the rank quality in Fig. 4, we have the
following observations.

20 40 60 80 100
Subset size

0.5

0.0

0.5

1.0

Ra
nk

 c
or

el
at

io
n

a) Flickr

20 40 60 80 100
Subset size

0.5

0.0

0.5

1.0

Ra
nk

 c
or

el
at

io
n

b) LiveJournal

20 40 60 80 100
Subset size

0.5

0.0

0.5

1.0

Ra
nk

 c
or

el
at

io
n

c) USA-road (ABRA can-
not finish in 10 hours)

20 40 60 80 100
Subset size

0.5

0.0

0.5

1.0

Ra
nk

 c
or

el
at

io
n

d) Orkut

Fig. 5: Rank correlation with different subset sizes. The shaded areas show the 95% confident intervals.

-100 0 100
Relative error (%)

0

25

50

75

100

Pe
rc

en
ta

ge False zero
True zero

a) Flickr

-100 0 100
Relative error (%)

0

25

50

75

100

Pe
rc

en
ta

ge

False zero

True zero

b) LiveJournal

-100 0 100
Relative error (%)

0

25

50

75

100

Pe
rc

en
ta

ge

False zero

True zero

c) USA-road (ABRA can-
not finish in 10 hours.)

-100 0 100
Relative error (%)

0

25

50

75

100

Pe
rc

en
ta

ge

False zero

True zero

d) Orkut

Fig. 6: (Signed) relative error

a) The rank deviation of KADABRA, SaPHyRabc-full,
SaPHyRabc (from left to right) on Florida. ABRA cannot
finish in 10 hours.

FL CO BAY NYC
102

103

104

Ru
nn

in
g

tim
e

(s
)

KADABRA
SaPHyRabc-full
SaPHyRabc

b) The running time

FL CO BAY NYC0.0

0.5

1.0

Ra
nk

 c
or

re
la

tio
n

c) The rank quality

Fig. 7: USA-road

• The more true zeros, the higher rank quality. From Fig.
6, the fractions of true zeros are 59, 29, 16, 4% on Flickr,
LiveJournal, USA-road, Orkut, respectively. For a node v
with bc(v) = 0, all the studied algorithms will return 0
as the estimation, i.e., true zeros are the easy cases that
cannot be incorrectly estimated. Since the true zero in
Flickr network is higher, ABRA and KADABRA provide
the estimation with better rank quality on Flickr (see Fig.
5).

• The fewer false zeros, the higher rank quality. From Fig. 6,
the fractions of false zeros for ABRA are 37, 68, 90% on
Flickr, LiveJournal, Orkut, respectively. For KADABRA,
the percentages are 39, 71, 78, 96% on Flickr, LiveJournal,
USA-road, Orkut, respectively. For SaPHyRabc-full and
SaPHyRabc, as we have shown in Lemma 19, there will be
no false zeros. As a result, SaPHyRabc-full and SaPHyRabc
can provide the estimation with better rank quality than
ABRA and KADABRA.

Case study on USA-road. Here, we select 4 subsets as 4
areas in [49] (see Table III for summary). More concretely, we
extract the longitude, latitude of nodes in 4 areas, and map
them with the node in USA-road network.

TABLE III: Subset’ summary.

Networks #Nodes #Edges
New York City (NYC) 264 K 734 K
San Francisco Bay Area (BAY) 321 K 800 K
Colorado (CO) 435 K 1,057 K
Florida(FL) 1,070 K 2,713 K

Similar to the previous experiments, SaPHyRabc-full and
SaPHyRabc outperform KADABRA on both running time

and rank quality (Fig. 7). Furthermore, the running time
of SaPHyRabc is better with the subset size smaller size. For
example, as the subset size reduces from 1, 070K (FL) to
264K (NYC), the running time of SaPHyRabc reduces from
105s to 59.4s.

In Fig. 7a), we show the average rank deviation of nodes
in the areas of Colorado. SaPHyRabc-full and SaPHyRabc
outperforms KADABRA in term of rank deviation (ABRA
cannot finish in 10 hours). For KADABRA, the highest average
rank deviation in an area is 39%. Meanwhile, the highest
average rank deviation in an area of SaPHyRabc-full and
SaPHyRabc are 11%, 12%, respectively.

VI. CONCLUSION.

We propose and investigate the ranking subset problem
when it is computationally prohibitive to obtain the exact
centrality values. Our proposed SaPHyRa framework indicates
the possibility to reduce the running time significantly when
ranking a subset in contrast to ranking all nodes in the
network. It also demonstrates an effective way to hybrid good
estimation heuristics with sampling-based estimation methods
to obtain both high ranking quality and theoretical guarantees
on the error. Future directions include extending the framework
to other centrality measures such as closeness centrality,
nodes’ influence, and Shapley value. Further, designing ranking
methods with provable guarantees on the ranking (not just the
estimation errors) is of particular interest.

Acknowledgment. The work of My T. Thai is partially
supported by NSF under award number CNS-1814614.

REFERENCES

[1] M. Newman, “Networks - an introduction,” in Oxford
University Press, 2010.

[2] K. Okamoto, W. Chen, and X.-Y. Li, “Ranking of
closeness centrality for large-scale social networks,” in
International workshop on frontiers in algorithmics.
Springer, 2008, pp. 186–195.

[3] D. Bader, S. Kintali, K. Madduri, and M. Mihai, “Approxi-
mating betweenness centrality,” in International Workshop
on Algorithms and Models for the Web-Graph. Springer,
2007, pp. 124–137.

[4] M. Bianchini, M. Gori, and F. Scarselli, “Inside pagerank,”
ACM Transactions on Internet Technology (TOIT), vol. 5,
no. 1, pp. 92–128, 2005.

[5] P. Zhao, S. Nackman, and C. Law, “On the application
of betweenness centrality in chemical network analysis:
Computational diagnostics and model reduction,” in
Combustion and Flame, vol. 162, 2015.

[6] M. Riondato and E. Upfal, “Abra: Approximating be-
tweenness centrality in static and dynamic graphs with
rademacher averages,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 12, no. 5, pp. 1–38,
2018.

[7] E. Nathan, G. Sanders, J. Fairbanks, D. A. Bader et al.,
“Graph ranking guarantees for numerical approximations
to katz centrality,” Procedia Computer Science, vol. 108,
pp. 68–78, 2017.

[8] G. Ghoshal and A.-L. Barabási, “Ranking stability and
super-stable nodes in complex networks,” Nature commu-
nications, vol. 2, no. 1, pp. 1–7, 2011.

[9] A. Kirkley, H. Barbosa, M. Barthelemy, and G. Ghoshal,
“From the betweenness centrality in street networks to
structural invariants in random planar graphs,” Nature
communications, vol. 9, no. 1, pp. 1–12, 2018.

[10] U. Brandes and C. Pich, “Centrality estimation in large
networks,” in International Journal of Bifurcation and
Chaos, vol. 17, no. 7, 2007, pp. 2303–2318.

[11] U. Brandes, “On variants of shortest-path betweenness
centrality and their generic computation,” in Social
Networks, vol. 30, no. 2, 2008, pp. 136–145.

[12] M. Borassi and E. Natale, “Kadabra is an adaptive
algorithm for betweenness via random approximation,”
in Proceedings of the 24th European Symposium on
Algorithms, 2016.

[13] A. Maurer and M. Pontil, “Empirical bernstein bounds
and sample-variance penalization,” in COLT, 2009.

[14] S. Shalev-Shwartz and S. Ben-David, Understanding
machine learning: From theory to algorithms. Cambridge
university press, 2014.

[15] L. Freeman, “A set of measures of centrality based on
betweenness,” in Sociometry, vol. 40, 1977.

[16] J. M. Anthonisse, “The rush in a directed graph,” in Sticht-
ing Mathematisch Centrum. Mathematische Besliskunde,
No. BN 9/71., 1971.

[17] M. Everett and S. Borgatti, “Ego network betweenness,”

in Social Networks, vol. 27, no. 1, 2005, pp. 31–38.
[18] J. Pfeffer and K. Carley, “k-centralities: local approx-

imations of global measures based on shortest paths,”
in Proceedings of the 21st International Conference on
World Wide Web, 2012, pp. 1043–1050.

[19] S. S. Khopkar, R. Nagi, and G. Tauer, “A penalty box
approach for approximation betweenness and closeness
centrality algorithms,” Social Network Analysis and
Mining, vol. 6, no. 1, p. 4, 2016.

[20] M. H. Chehreghani, “An efficient algorithm for approxi-
mate betweenness centrality computation,” The Computer
Journal, vol. 57, no. 9, pp. 1371–1382, 2014.

[21] Z. AlGhamdi, F. Jamour, S. Skiadopoulos, and P. Kalnis,
“A benchmark for betweenness centrality approximation
algorithms on large graphs,” in Proceedings of the 29th
International Conference on Scientific and Statistical
Database Management, 2017.

[22] A. E. Sariyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek,
“Shattering and compressing networks for betweenness
centrality,” in Proceedings of the 2013 SIAM International
Conference on Data Mining. SIAM, 2013, pp. 686–694.

[23] A. Saxena, R. Gera, and S. Iyengar, “A faster method
to estimate closeness centrality ranking,” arXiv preprint
arXiv:1706.02083, 2017.

[24] A. Saxena, V. Malik, and S. Iyengar, “Estimating the
degree centrality ranking,” in 2016 8th International
Conference on Communication Systems and Networks
(COMSNETS). IEEE, 2016, pp. 1–2.

[25] K. Wehmuth and A. Ziviani, “Daccer: Distributed as-
sessment of the closeness centrality ranking in complex
networks,” Computer Networks, vol. 57, no. 13, pp. 2536–
2548, 2013.

[26] F. L. Cabral, C. Osthoff, D. Ramos, and R. Nardes, “Mdac-
cer: Modified distributed assessment of the closeness
centrality ranking in complex networks for massively par-
allel environments,” in 2015 International Symposium on
Computer Architecture and High Performance Computing
Workshop (SBAC-PADW). IEEE, 2015, pp. 43–48.

[27] Z. C. Steinert-Threlkeld, “Longitudinal network centrality
using incomplete data,” Political Analysis, vol. 25, no. 3,
pp. 308–328, 2017.

[28] M. R. F. de Mendonca, A. M. S. Barreto, and A. Ziviani,
“Approximating network centrality measures using node
embedding and machine learning,” IEEE Transactions on
Network Science and Engineering, 2020.

[29] F. Grando, L. Z. Granville, and L. C. Lamb, “Machine
learning in network centrality measures: Tutorial and
outlook,” ACM Computing Surveys (CSUR), vol. 51, no. 5,
pp. 1–32, 2018.

[30] F. Grando and L. C. Lamb, “Computing vertex centrality
measures in massive real networks with a neural learning
model,” in 2018 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2018, pp. 1–8.

[31] A. Kumar, K. G. Mehrotra, and C. K. Mohan, “Neural
networks for fast estimation of social network centrality
measures,” in Proceedings of the Fifth International

Conference on Fuzzy and Neuro Computing (FANCCO-
2015). Springer, 2015, pp. 175–184.

[32] P. Avelar, H. Lemos, M. Prates, and L. Lamb, “Multitask
learning on graph neural networks: Learning multiple
graph centrality measures with a unified network,” in
International Conference on Artificial Neural Networks.
Springer, 2019, pp. 701–715.

[33] U. Brandes, “A faster algorithm for betweenness central-
ity,” in The Journal of Mathematical Sociology, vol. 25,
2001.

[34] A. E. Sariyüce, K. Kaya, E. Saule, and Ü. V. Çatalyürek,
“Betweenness centrality on gpus and heterogeneous archi-
tectures,” in Proceedings of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units,
2013, pp. 76–85.

[35] A. McLaughlin and D. A. Bader, “Scalable and high
performance betweenness centrality on the gpu,” in
SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis. IEEE, 2014, pp. 572–583.

[36] M. Bernaschi, M. Bisson, E. Mastrostefano, and F. Vella,
“Multilevel parallelism for the exploration of large-scale
graphs,” IEEE transactions on multi-scale computing
systems, vol. 4, no. 3, pp. 204–216, 2018.

[37] A. van der Grinten and H. Meyerhenke, “Scaling between-
ness approximation to billions of edges by mpi-based
adaptive sampling,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE,
2020, pp. 527–535.

[38] T. Alahakoon, R. Tripathi, N. Kourtellis, R. Simha, and
A. Iamnitchi, “K-path centrality: A new centrality measure
in social networks,” in Proceedings of the 4th workshop
on social network systems, 2011, pp. 1–6.

[39] C. Spearman, “The proof and measurement of association
between two things,” The American journal of psychology,
vol. 15, no. 1, pp. 72–101, 1904.

[40] M. G. Kendall, “Rank correlation methods.” 1948.
[41] P. Thai, M. Thai, T. Vu, and T. Dinh, “Saphyra: A

learning theory approach to ranking nodes in large
networks.” [Online]. Available: https://www.dropbox.com/
s/3gnf0fmps4qeagn/icde394.pdf?dl=0

[42] E. G. Bajmóczy and I. Bárány, “On a common generaliza-
tion of borsuk’s and radon’s theorem,” Acta Mathematica
Academiae Scientiarum Hungarica, vol. 34, no. 3-4, pp.
347–350, 1979.

[43] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient
algorithms for graph manipulation,” Communications of
the ACM, vol. 16, no. 6, pp. 372–378, 1973.

[44] F. Harary and D. Welsh, “Matroids versus graphs,” in
The many facets of graph theory. Springer, 1969, pp.
155–170.

[45] M. Riondato and E. Kornaropoulos, “Fast approximation
of betweenness centrality through sampling,” in Data
Mining and Knowledge Discovery, vol. 30, no. 2, 2016,
pp. 438–475.

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to algorithms. MIT press, 2009.
[47] M. Riondato and E. Upfal, “Abra: Approximating

betweenness centrality in static and dynamic graphs
with rademacher averages,” in Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New
York, NY, USA: ACM, 2016, pp. 1145–1154. [Online].
Available: http://doi.acm.org/10.1145/2939672.2939770

[48] “Stanford large network dataset collection.” [Online].
Available: http://snap.stanford.edu/data/index.html

[49] The shortest path problem: Ninth DIMACS
implementation challenge. [Online]. Available: http:
//www.diag.uniroma1.it//challenge9/download.shtml

https://www.dropbox.com/s/3gnf0fmps4qeagn/icde394.pdf?dl=0
https://www.dropbox.com/s/3gnf0fmps4qeagn/icde394.pdf?dl=0
http://doi.acm.org/10.1145/2939672.2939770
http://snap.stanford.edu/data/index.html
http://www.diag.uniroma1.it//challenge9/download.shtml
http://www.diag.uniroma1.it//challenge9/download.shtml

	I Introduction
	II Preliminaries
	II-A Ranking subset problem (RSP)
	II-B RSP as a hypothesis ranking problem
	II-C Ranking subset based on betweenness centrality (RSPbc)

	III SaPHyRa: Sample space Partitioning Hypotheses Ranking
	III-A Direct estimation.
	III-B Sample space partitioning framework
	III-C Risk Estimation in the Approximate Subspace
	III-D Correctness and Complexity.

	IV SaPHyRabc: Ranking node subset with Betweenness centrality
	IV-A Sample Space for RSPbc
	IV-B Sample space partitioning for RSPbc
	IV-C Risk Estimation in the Approximate Space
	IV-D SaPHyRabc algorithm
	IV-E Correctness and Complexity.

	V Experiments
	V-A Experiments settings
	V-B Experiment results

	VI Conclusion.

